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Focal Areas 

(2) Predictive modeling through the use of AI techniques.

Scientific Challenge 

We seek to answer the following questions: What interactions across spatial and temporal scales 

drive multivariate compound and cascading water cycle extremes, and how can we leverage 

understanding of such interactions to improve predictive understanding of these events and 

quantification of their impacts? 

Rationale 

Extremes represent the upper or lower end of the range of spatiotemporal conditions in the Earth 

system that often have adverse socio-ecological consequences as natural and human systems are 

exposed to hazardous environments to which they are not well accustomed. These conditions can 

be a result of univariate outliers (e.g., precipitation/temperature extremes) or can be due to a 

confluence of two or more variables (e.g., drought, wildfires, heat waves, ocean-terrestrial 

flooding), which individually may be in their extreme states. The impacts of extremes particularly 

become exceptionally disproportionate when they compound or cascade one another. Some 

examples of compounding extremes include (i) drought and heatwave, (ii) extreme precipitation 

and strong winds or storm surge, (iii) hot, dry, and windy conditions, and (iv) extreme rain over 

burned areas causing debris flow. Compound extremes are often regarded as the co-occurrence of 

multiple environmental stressors over the same geographical region that collectively represent 

extreme hazardous conditions. However, concurrent extremes with common drivers can also be 

studied over multiple geographical regions with distinct but interconnected extremes (e.g., 

common drivers contributed to both the 2010 Russian heatwave and Pakistan floods (Lau and Kim, 

2012)). Consecutive occurrence of extremes can also cascade in the form of a major disaster, such 

as the 2018 California mudflows that were a result of a chain of unconnected events (drought → 

extreme precipitation → vegetation (fuel) growth → hot summer → wildfires → extreme 

precipitation → debris flow; see Figure 1) over a period of several years (AghaKouchak et al., 

2020). By design, such occurrences represent the worst conditions possible and have the greatest 

potential to disrupt regional-scale socioeconomic and ecosystem sustainability and the global food 

supply chain. 

The research in the area of compound and cascading extremes is relatively new and therefore, 

robust frameworks for defining such extremes and evaluating their impacts on social-ecological 

systems are still a work in progress (e.g., Leonard et al., 2014; AghaKouchak et al., 2020). 

Currently, gaps in the analytical frameworks are used to characterize such extremes. Most of the 

research thus far has focused on temporally compounding extremes, whereas spatially 

compounding extremes (i.e., the concurrent occurrences of similar or distinct extremes across 

multiple regions) have received relatively limited attention. Given that interactions across 

spatiotemporal scales in the Earth system are complex, a complete understanding of the nature of 

interacting extremes or confluence of nonextreme states of Earth system variables that lead to 
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compounding events is likely yet to be unraveled. Similarly, our knowledge of the extent to which 

the impacts of such extremes may cascade and of the resulting multi-sector vulnerability is 

currently limited. Likewise, no systematic understanding toward the role of regional and large-

scale modes of natural and forced Earth system variability in driving such extremes exists (e.g., 

Steptoe et al., 2017) that can be leveraged to test the ability of Earth system models, and to improve 

their predictability at varying time scales.  

Figure 1. The following set of consecutive events resulted in significant human health and 

economic impacts in California: a prolonged extreme drought from 2012 to 2016; extreme 

precipitation during the winter of 2017, enhancing growth of fuels such as shrubs and grasses; a 

very dry, warm spring and summer, reducing moisture levels and drying existing vegetation; 

record-setting Diablo and Santa Ana winds (for sustained wind and low humidity); extreme fires 

occurring shortly thereafter (i.e., the Thomas Fire in December 2017); and extreme rainfall over 

the burned area in January 2018 (Source: AghaKouchak et al., 2020).  

Narrative 

Improvements in the understanding of compound and cascading extremes and their impacts 

requires a multi-pronged approach of detection, attribution, and prediction, where machine/deep 

learning and artificial intelligence algorithms can aid and accelerate progress.  

Development of robust analytical frameworks that can efficiently detect spatiotemporal 

environmental stressors causing compound and cascading extremes: Deep-learning, 

convolutional neural networks have been applied on large-scale modeled and observed data sets 

to efficiently identify individual extremes (e.g., Horton et al., 2015). Such machine learning and 

data analytics tools can be a promising solution to relatively more complex and interdependent or 

interacting states of the Earth system that lead to compounding or cascading events. Cascading 

events are particularly difficult to identify because they are often separated by space and time. For 
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this reason, some common multivariate models designed for capturing statistical dependence fail 

to describe the relationship between cascading hazards (e.g., extreme rain and wildfires are 

typically statistically independent, but they can interact through their impacts). The development 

of such automated and highly efficient algorithms requires comprehensive training data sets, and 

powerful pattern recognition algorithms that “learn” the teleconnected relationships and associated 

time lags, which is challenging given the uncertainties across global hydrometeorological 

observations in representing spatiotemporal variations of interacting or interdependent extremes. 

To this end, machine learning–guided data assimilation can provide an objective way to combine 

observations, simulations, and remotely sensed data streams to improve on these limitations.  

Attribution of the Earth system states that are precursors to compound and cascading events: The 

identification of processes that influence the occurrence of compound and cascading extremes is a 

key step to establishing their predictive capability. Characteristics of extremes in the Earth system 

are often related to the dynamics of planetary waves (Petoukhov et al., 2013). Wave patterns in jet 

streams, atmospheric blocking, and wave breaking are some of the leading causes of simultaneous 

or concurrent extremes (Kornhuber et al., 2020). Several factors can excite such atmospheric 

patterns, including anomalies in sea surface temperatures over the tropical/subtropical oceans 

and/or land surface conditions over the terrestrial regions. Atmospheric waves that originate along 

the tropical jet streams are also known to have associations with the genesis of tropical 

storms/hurricanes that subsequently can lead to significant compounding weather events. At 

monthly to seasonal timescales, large-scale modes of natural climate variability, such as the El 

Niño Southern Oscillation (ENSO), remotely exert their direct and indirect influence through the 

propagation of Rossby waves in the higher latitudes as a result of anomalies in the atmospheric 

diabatic heating over the oceanic basins. At sub-monthly scales, the interaction of air masses leads 

to the development of frontal boundaries, characterized by a sharp transition in moisture, 

temperature, and wind direction, which are often associated with significant weather events. 

Overall, patterns in the land-atmosphere-ocean continuum from the movement of air masses to the 

propagation of waves interact and intersect in ways that are fundamental to the formation of 

compound or cascading extremes. Machine learning and artificial intelligence algorithms can be 

used as cognitive tools to recognize, classify, and predict these patterns. Although the use of 

artificial neural networks for the classification of patterns in the Earth system is now quite common 

(e.g., Chattopadhyay et al., 2020; Kim et al., 2019), attribution of these patterns to specific physical 

causes remains a challenge, where deployment of explainable artificial intelligence techniques can 

be vital. Such analytical frameworks can subsequently guide the idealized Earth system modeling 

to elucidate the underlying physical mechanisms.  

Prediction of compound and cascading extremes at sub-seasonal to multi-decadal time scales: 

Identification of precursors to compound and cascading extremes and the underlying physical 

mechanisms or modes of variability provides a pathway to improve the predictability of such 

events at varying time scales. ENSO is one of the major modes of natural variability and a 

dominant force in the spatiotemporal recurrence of compounding extremes (e.g., Mukhrjee et al., 

2020). Information about the state of ENSO is useful for predictions on weekly to seasonal 

timescales and can substantially improve preparedness and response system capacities. Some 

evidence shows that statistical predictive modeling employing deep learning approaches can 

provide ENSO forecasts at sufficient lead times with skills at par or better than dynamical models 

(Ham et al., 2019), which should guide development of similar approaches for other modes of 

natural variability. Moreover, atmospheric teleconnections can vary at sub-seasonal scales because 

of complex inter-basin and land-atmosphere-ocean interactions (Abid et al., 2020; Cai et al., 2019), 
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which need to be deciphered for the prediction of compounding extremes at shorter timescales. 

Machine learning techniques can identify geographical areas influencing the variability of these 

teleconnections and therefore can inform the effort to reduce uncertainties in dynamical modeling 

approaches. Furthermore, forced variability of the Earth system is partly responsible for an 

increase in the recurrence of extremes and, therefore, separation of these variations from naturally 

occurring transitory changes may be necessary. To this end, artificial neural networks, when 

trained on historical and future Earth system model simulations, can separate the forced signal 

from the natural variability. Overall, artificial intelligence techniques provide the promise of 

improved predictive understanding of water cycle extremes to cope with the emerging challenges 

posed by climate variability and change.  
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