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Focal Area 

(2) Data acquisition and assimilation enabled by machine learning, AI, and advanced methods 

including experimental/network design/optimization. We emphasize the importance of leveraging 

optimization techniques from AI/machine learning (ML) to solve challenging problems in Earth 

system modeling. 

Science Challenge 

Automatic differentiation has had a transformative effect on ML by allowing the calculation of 

gradients of arbitrary functions in an incredibly large class of models. We can potentially realize 

similar improvements in parameter estimation and control for Earth system models (ESMs) by 

reimplementing them in computational frameworks from ML. Practitioners working with large 

(>107 parameters) models in ML and AI can obtain good predictive performance in a range of 

spatiotemporal tasks by making use of optimization via stochastic gradient descent and 

incorporating prior knowledge at multiple levels. We propose writing ESMs in open-source 

computational frameworks such as Torch, Tensorflow, and JAX to greatly expand the scope of 

environmental forecasting and management challenges, which can be addressed by leveraging 

automatic differentiation and gradient descent-like algorithms. We do not call for a wholesale 

replacement of physical models with data-driven surrogates, but rather advocate for interleaving 

physical and empirical equations in a manner that is most faithful to the extent of our scientific 

knowledge and observational data. Central to this topic is the merging of differentiable physical 

simulations with differentiable optimization layers, which are now both beginning to come to the 

forefront. 

Rationale 

This white paper describes a scenario to highlight a few of the essential complexities currently 

faced by environmental analysts. It is now conceivable that multiple nations could potentially gain 

the capability to modify the global climate through solar geoengineering. If this happens, the likely 

technology would use high-altitude aircraft to inject sulfate-based aerosols into the stratosphere, 

reducing net radiative forcing by reflecting some sunlight back into space. Such a policy, if 

conducted naively, could potentially lead to disruption of atmospheric hydrologic processes, 

including moisture transport, cloud formation, and precipitation with possible concomitant impacts 

on extreme hydrologic events. A wise decision-maker would seek to maximize the beneficial 

cooling effect of the proposed geoengineering scheme while minimizing ecological and 

agricultural disruption. Although we have illustrated a particular example, our conclusions hold 

for highly parameterized physical models of all sorts, including those used to simulate surface and 

subsurface hydrology.  

The aforementioned scenario is simple to formulate at a conceptual level, but it would represent 

an exceedingly difficult problem from an optimization perspective. We specifically focus on the 

chief difficulties of scale and uncertainty. Many thousands or even millions of viable 

spatiotemporal aerosol delivery coordinates exist, each of which may have a unique cost function 
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associated with its usage. We are further hampered by a less-than-perfect knowledge of the system, 

as well, with substantial uncertainties associated with model parameters and initial conditions. 

Thus, we are confronted with many of the challenges associated with stochastic optimization. 

Given that each climate model forward simulation is quite computationally intensive, the usage of 

large numbers of forward evaluations to either apply evolutionary algorithms or finite-difference 

sensitivity methods is not viable. A common alternative is to use data-driven function 

approximators such as neural networks or Gaussian processes, which have no built-in knowledge 

of system dynamics and cannot be relied upon to generalize beyond the extent of the data and 

priors used to estimate their parameters. Below, we explain how using automatic differentiation as 

implemented in modern ML frameworks can be used to resolve both problems.  

Narrative 

Large-scale training of neural networks has been made dramatically more effective over the past 

several decades by the development of techniques for algorithmically computing gradients of 

functions in computation time, which is constant with regard to the number of inputs. Put simply, 

autodiff (automatic differentiation) allows us to obtain the entire gradient of a function with only 

a single function evaluation. This is unlike numerical differentiation, which requires a forward 

pass for each dimension of the input; it also improves upon symbolic differentiation by avoiding 

the exponential number of terms that result from naïve applications of the chain rule for 

derivatives. Additionally, examples of physical models (Hu et al., 2020; Schenck and Fox, 2018) 

are now implemented in autodiff-enabled programming frameworks. Because the composition of 

differentiable functions is also differentiable via the chain rule, these forms could be combined 

and composed to create novel systems amenable to the application of gradient descent or its 

stochastic counterpart. A novel and intriguing addition to this variety of model components is the 

differentiable optimization layer in which, for example, the entire procedure of quadratic 

programming can be treated as a single differentiable function, thus allowing backpropagated 

gradients to easily flow through (Amos and Kolter, 2017). This would be immensely useful in 

fashioning integrated socioenvironmental models that allow for interplay between physical 

dynamics and optimization pursued by managers. 

Specifying a highly parameterized model is often much more straightforward than obtaining 

statistically justified estimates of its parameters. In scenarios in which we lack sufficient 

observational data to constrain ESMs, we can often make use of statistical or prior information to 

make them identifiable. However, this often requires specifying nonphysical components for our 

model (i.e., shrinkage terms pushing some parameters to zero or priors enforcing spatial 

smoothness). With a lack of physical intuition to guide us in estimating what these empirical 

parameters may be, we may instead formulate this as a Bayesian inference problem concerning 

assimilation of data and priors with physical models. Once more, automatic differentiation 

becomes the focus because it is a key element of gradient-based Markov chain Monte Carlo 

methods, such as Hamiltonian Monte Carlo, that are at the heart of several widely used statistical 

frameworks (Carpenter et al., 2017; Salvatier et al., 2016). By using gradient-based Markov chain 

Monte Carlo for ESMs, we can potentially realize savings in time complexity in the number of 

model parameters from 𝑂(𝑁2) to ≈ 𝑂(𝑁
5

4) exhibited for other classes of statistical models 

(Mattingly et al., 2012; Pillai et al., 2012). This presents a tremendous new opportunity for 

applying a wide range of Bayesian modeling techniques to the study of Earth system science at 

scale. We can also realize a much simpler use of autodiff by recognizing that sensitivity analysis 



 

3 

is largely a matter of computing derivatives of target variables with regard to inputs. Thus, we 

could potentially replace current methods that require a function space approximation in terms of 

a limited number of basis functions (Pianosi et al., 2016). These methods are used to circumvent 

computation of Hessian matrices, a task that autodiff is uniquely well suited to handle.  

The greatest current barrier to making these breakthroughs is the time and effort required to 

translate our knowledge as encoded in existing community models into a format intelligible by 

automatic differentiation software. However, substantial progress has been made by the AI/ML 

community in developing transpilers capable of automatically mapping programs specified in a 

generic, high-level language into autodiff-enabled frameworks (Bradbury et al., 2018). This also 

aligns well with current pushes to use commercially available deep learning packages in high-

performance computing environments administered by the US Department of Energy (Chien et 

al., 2019). We also posit that favoring model implementations in widely used open-source ML 

frameworks will aid in the communication and dissemination of related modeling work because it 

would allow us to build upon existing advances in model transfer, serialization, and dissemination 

that have already been made by the AI community. 
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