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Focal Areas 

(1) Data acquisition and assimilation enabled by machine learning, AI, and advanced methods

including experimental/network design/optimization, unsupervised learning (including deep

learning), and hardware-related efforts involving AI (e.g., edge computing). Focal areas 2 and 3

have critical dependencies to the modernization described.

Key benefits to the focal areas: (1) Modernized observatory framework capable of agile adaptive 

observation, (2) Advanced instrument and data tagging supporting AI data acquisition for 

assimilation or validation, and (3) Widespread data interoperability bridging Earth system 

prediction scales 

Science Challenge 

The integrated water cycle is composed of many processes. From fine scale processes such as 

evapotranspiration, entrainment and mixing to emergent behavior such as deep convection, sea ice 

formation and stratocumulus decks, each phenomena needs to be observed, modelled, understood 

and integrated into ESMs in order to improve earth system predictability. And, as outlined in the 

white paper call, MODEX is a key concept to achieve continuous improvement of numerical 

simulations of the earth system across spatial and temporal scales. To achieve the MODEX 

concept, it is critical to assess current observatory pipelines and their data management 

components and modernize them to support AI-based research missions. The community model, 

data, and analysis capabilities listed on the EESD’s MODEX diagram represent the diverse nature 

of resources available to scientists and highlight the need for a robust data integration strategy to 

serve across the MODEX enterprise. This white paper proposes to address these challenges by 

evaluating the current data pipeline and improving it from data collection to distribution to meet 

the AI mission. The white paper’s scope includes identifying specific data services components of 

ARM, applying them for similar sensor-based measurement projects, and developing and adapting 

community-based standards to enable data interoperability to support AI projects and broaden the 

scope of the datasets. 

Rationale 

Data integration is the fundamental component for conducting interdisciplinary research for 

integrative and associated water cycle extremes. Many of the EESSD repositories provide highly 

relevant but domain specific datasets for this research. To enable edge computing–based, AI-

driven sampling techniques and on-demand data access for AI-driven dynamic data assimilation 

for Earth system predictability, common standards and preferred data access methods must be 

established. Modernizing the data collection pipeline with a modular architecture for real-time data 

access with plug-and-play AI models will be extremely beneficial for the proposed MODEX 

enterprise. If this architecture is established, various EESSD field data collection projects, such as 
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ARM, NGEE, and Spruce, will be able to leverage and upgrade their data collection pipeline to 

support the MODEX concept. 

The benefits of the proposed approach will include improved AI-friendly data collection, 

discovery, and distribution infrastructure that could be applied across the EESSD and other data-

intensive projects. Specific benefits will include new standards and protocols for real-time data 

access from instruments, real-time data quality analysis and data reductions, modular data flow 

architecture to support various AI models, and community-based data discovery web services for 

providing a direct data access pipeline from EESSD data repositories to AI models. 

The proposed approach coupled with advanced 5G network capability (Beckman et al., 2020) and 

edge-computing offers new opportunities for near real-time data analysis and data collection 

configurations.  

Narrative 

Our methodology follows four activities critical to advancing the AI science mission: 

Activity 1: Evaluating the data pipeline components from collection to distribution by utilizing 

“digital twin” functionality for instrument interoperability to enhance MODEX design 

Current field sensor projects do not have strong and seamless connections to MODEX activities. 

To achieve such connections, a new metadata methodology describing the instrumentation and the 

data resulting from operation must be developed. The goal is to define the output of an instrument 

and the data products built off the output to enable the emulation of multiple data stream analysis 

and its use in AI techniques. Prepared datasets for use in an AI-driven dynamic assimilation 

method or instrument/measurement emulator, require data and information not only be efficiently 

discoverable and available but also must include all pertinent information on which to base 

selective decisions. This information would need to be processed at the speed that the specific use 

requires. Some information, such as instrument model and configuration, is somewhat 

straightforward to capture. But new formatting methods are required to flow calibration 

information necessary for uncertainty quantification with a format that can be used in “on-the-fly” 

processing using multi-instrument/observation data. A relevant, as opposed to realistic “digital 

twin” level of information regarding instruments and observations is required. We are looking for 

accurate representation of instrument measurements with all pertinent dependencies defined and 

accurately represented, either for actual operation or for adjustment in emulator settings. The result 

will be defined instruments/measurements available for AI-driven assimilation, emulation, 

parameterizations, and model algorithms.  

The intent is to apply this methodology from an observatory perspective, such as ARM, which 

already adheres to FAIR (Findable, Accessible, Interoperable, and Reusable) principles ensuring 

they are maintained. This methodology will increase the interoperability of datasets by defining 

differences within datasets so they can be overcome, thus broadening the accessibility of DOE 

archived data to AI-driven techniques. 
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As illustrated in Figure 1, 

the team will develop a 

database to capture the 

details of instruments 

and their statuses, 

enabling a digital twin 

for field instruments that 

will be critical for 

instrument design and 

operation. This concept 

will also be applied to 

streamline the data 

pipeline used for 

processing and archiving 

petabytes of sensor data 

from remotely deployed 

instruments. 

From MODEX to 

observations, the data 

simulators and emulators will help feed the observational network design and operation. 

Additionally, this and activity 2, supports edge computing with 5G for real-time data access, data 

quality analysis, and configuration of instruments that are deployed in remote locations.  

Activity 2: Real-time instrument data quality analysis and processing using edge computing 

To support the real-time data flow required by activity 1, development and deployment of a 

modular edge computing framework at a site, such as the ARM Southern Great Plains central 

facility, would allow for the real-time quality analysis of instruments to be available. This real-

time analysis would enable detection and flagging of problematic data by cross-analyzing datasets 

before their use in a dynamic selection process. The use of multiple variables for quality control is 

similar to efforts by the radar community to quality control radar data using neural networks with 

multiple polarimetric variables (Lakshmanan et al. 2014). Deep neural network has been shown to 

improve retrievals of temperature and humidity profiles from a microwave radiometer (Yan, et al. 

2020) or a fully convolutional network to calculate cloud masks from lidar data (Cromwell and 

Flynn 2019). Coupling machine learning based retrievals with real-time high-quality data would 

allow for the production of advanced data products with lower uncertainties in a more efficient 

manner as compared to current products which can take up to 6-months or more to produce a final 

product.  Combining real-time data with edge computing capabilities would also provide an avenue 

for real-time modifications to the measurement strategy to better capture events of scientific 

interest.  This could include modification of radar or lidar scan strategies to focus on a single cloud 

or it could include modify the temporal frequency in which data are collected such as shifting from 

1-minute averages to 1-second sampling intervals when atmospheric events of interest traverse

over the domain. All of these capabilities—real-time data flow, quality control, data product

generation, and adaptive sampling driven by edge computing and ML—will greatly benefit the

scientific community and help accelerate the science.

Figure 1. Digital twin concept to manage data sources and connect 

to MODEX. 
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Activity 3: Data tagging to identify benchmarking datasets 

AI-based models require accurate, clean, well-labeled, and well-prepared data and metadata to 

produce the desired output. With thousands of diverse data streams collected for domain-specific 

research, it is difficult to identify the most appropriate data for AI-based inter-domain research. 

As an example, the ARM Data Center repository (Prakash et al., 2018) currently holds over 2.8 

petabytes of data covering more than 11,000 diverse data products. Of this, more than 50 different 

data streams contain cloud properties data at various spatiotemporal scales. Data tagging based on 

recommendations and suitability for use in broader research areas, such as the integrative water 

cycle, will help the AI models to readily access the most appropriate data. It will also help the data 

repositories prepare and provide training datasets for unsupervised learning. ML techniques can 

support the identification of the so called “master data,” or the most relevant data. With techniques 

such as pattern extraction, information retrieval, and classification using genetic algorithms; 

support vector classifiers and k-nearest neighbors; and the use of input from subject matter experts, 

these data streams could be tagged and used beyond the originally anticipated use cases. These 

techniques will intelligently detect similar data by clustering similar columns, identifying likely 

matches, and recognizing patterns within data files. A combination of deterministic, heuristic, and 

probabilistic algorithms can be used to synthesize contextual attributes (e.g., when, what, where, 

who) from unstructured data for use in the matching process. Data tagging based on 

recommendations and suitability using probabilistic classifiers similar to supervised learning with 

Naïve-Bayes algorithms and MaxEnt (multinomial logistic regression), natural language 

processing, and Stanford’s Named Entity Recognizer can be used in broader research areas, such 

as the integrative water cycle. This approach will help the AI models readily access the most 

appropriate data or master data and help data repositories prepare and provide training datasets for 

unsupervised learning. 

Activity 4: Enabling data interoperability between data repositories and AI models, developing 

and extending community-based standards and protocols 

Although datasets may technically be interoperable, integration or communication among these 

datasets often fails because of a lack of cross-domain ontologies and standards, significantly 

impacting data sharing with inter-domain AI-based research activities such as Earth system 

prediction. Successful data interoperability can be achieved by creating or extending currently 

available data sharing standards and protocols (e.g., ISO 19115 , FGDC, web services) and 

establishing frameworks to facilitate dynamic data discovery (Devarakonda et al., 2020) and data 

transformation into AI analysis-ready forms. In addition, ontologies provide background 

knowledge that can be exploited in ML models with domain-specific keywords as training sets 

(Kulmanov et al., 2020). The white paper team proposes to work with user communities, EESSD’s 

data repositories, and other data centers to develop/extend the standards, protocols, and cross-

domain ontologies to achieve maximum data interoperability to support AI-based research 

activities including integrative water cycle and associated water cycle extremes. 
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Suggested Partners/Experts 

Yaxing Wei is the lead scientist of the ORNL Distributed Active Archive Center (DAAC). His 

research interests include data management, visualization, sharing, and analysis.  

Shaocheng Xie is the group leader of the LLNL cloud processes research and modeling group. He 

is the project leader for the development of the DOE E3SM next generation of atmospheric 

physics. He also leads the ARM effort to bridge ARM data and climate model development. His 

research interests include climate modeling and evaluation, cloud and convection 

parameterizations, and ARM data integration, quality and uncertainty quantification, and objective 

analysis. 

We plan to leverage components of the “AI-Driven Data Discovery to Improve Earth System 

Predictability” white paper submitted by Devarakonda et al. to implement the data interoperability 

and data sharing concepts explained in this white paper. 
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