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1. Focal Areas (i) classification and/or anomaly detection methods applied towards identifying            
critical climate system thresholds; improved emulator design for (ii) reducing computational           
costs relative to full-physics models and (iii) improved uncertainty quantification workflows 
 

2. Rationale The evolution of the Antarctic ice sheet in response to climate change remains               
the single largest uncertainty in projecting future sea-level rise (SLR), with risk-averse            
projections for 2100 spanning between zero and a half meter1. During the past decade, DOE               
has made substantial investments in new ice sheet and Earth system models needed to              
improve both understanding and predictive capability in this area. Yet major challenges remain,             
including better understanding when and under what circumstances significant increases in SLR            
from Antarctica may be initiated and better quantifying uncertainties in model-based SLR            
projections. Here, we discuss the potential for transformative advances in these areas through             
the application of machine learning and artificial intelligence (ML and AI, respectively).  

Much of the Antarctic ice sheet rests on bedrock depressed below sea level. This geometry,               
whereby the bedrock slopes downwards as the ice sheet thickens inland, is unstable to retreat               
along much of its margin. Where the ice sheet thins to the point of floatation via buoyancy (the                  
transition from grounded ice sheet to floating ice shelves, or “grounding line”), a small amount               
of downslope retreat results in thicker ice at the grounding line. This increase in thickness leads                
to a large increase in ice flux and ice thinning at that same location. Thinning leads to                 
additional floatation and further retreat of the grounding line downslope into still thicker ice.              
Thus, a small initial perturbation may ultimately lead to irreversible ice sheet collapse. This              
“marine ice sheet instability” (MISI) is well characterized theoretically2,3 and is reproduced by             
current models4.  

Triggers for the MISI are well understood - ice shelf thinning and/or break-up can occur due                
to interactions with the ocean (below) or the atmosphere (above), followed by grounding line              
retreat7,8. These behaviors are represented by current ice sheet4,8 and Earth system9,10 models.             
While large-scale retreat and collapse of West Antarctica would take many thousands of years,              
the initiation of that retreat (via MISI) could occur in the coming years or decadesa. Such an                 
occurrence would lead to catastrophic impacts on coastal infrastructure and ecosystems           
worldwide. A question of critical importance is then how to unequivocally recognize the             
relevant threshold (ice sheet and climate) behaviors - if and when they occur - from the myriad                 
of other signals within Earth’s complex climate system. A related question of extreme practical              
importance to policymakers and planners is how best to quantify, and if possible reduce,              
uncertainties in model-based projections of these same processes. 
  
3.1 Narrative: Approach and Motivating Questions We propose using output from ensembles            
of ice sheet and Earth system model simulations to generate datasets (spatiotemporal time             
series) for use in ML and AI training (supervised and/or unsupervised methods; classification             
and/or anomaly detection approaches). This training will be used to identify critical features,             
behaviors, or thresholds within the ice sheet and climate systems, which can then be targeted               
in observations. Similarly, these approaches may be used to design improved observational            

a Observations and modeling5,6 have been interpreted as indicating that a MISI may already be underway along 
parts of the West Antarctic ice sheet margin. 
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sensors and campaigns for targeting these same features. Critical to this approach is that              
current models allow and account for the relevant features and behaviors of interest. For              
example, when subject to appropriate forcing, DOE ice sheet models demonstrate MISI up to              
and including full collapse of specific sectors of the ice sheet4,11,12. DOE’s Energy Exascale Earth               
System Model (E3SM)13 simulates submarine melting beneath ice shelves as well as the             
relevant local, regional, and distal climate processes9,10 that impact that meltingb. These same             
ensembles can be used with ML and AI approaches to generate computationally cheaper,             
physically-based, reduced order models (“emulators”) for use with existing or new uncertainty            
quantification workflows. Thus, in addition to better understanding, identifying, and          
quantifying the conditions under which rapid SLR from Antarctica may occur, we also aim to               
improve our ability to quantify uncertainties that accompany SLR projections.  

With this general approach in mind, we pose the following questions around which we              
identify (below) several focus areas for ML-and-AI enabled research: (1) What ice sheet             
observations indicate that a MISI has or may be initiated within the Antarctic ice sheet? (2)                
What broader Earth system observations point to climate forcing that could initiate an             
Antarctic MISI? (3) What are the uncertainties associated with SLR projections made using ice              
sheet & Earth system models? (4) What observations are critical for monitoring relevant             
threshold behaviors or for reducing uncertainties in SLR projections?  
 

3.2 Narrative: Research Focus Areas We identify three primary areas of research related to ice               
sheet evolution and sea-level rise that will leverage ML and AI approaches, including: (1) the               
detection, characterization, and classification of anomalous events; (2) the discovery and           
design of reduced order models; (3) the design of improved uncertainty quantification            
workflows. Below, we elaborate primarily on the first, with briefer introductions to the latter              
two. We further note that, within each of these research areas (or “use cases”), numerous               
other related problems in Earth system science might be similarly approached.  
 

3.2.1 Detection, characterization, and classification of anomalous events Ensembles of ice           
sheet model simulations will be used to generate a wide range of potential future ice sheet                
evolutionary paths, which will then be used with ML/AI approaches to identify critical,             
observable behaviors associated with the initiation of a MISI. For example, simulations could             
be binned for training based on whether or not unstable grounding line retreat has initiated               
within a given time window, based on different rates of grounding line retreat, rates of ice flux,                 
or rates of ice sheet thinning (supervised classification). Alternatively, a given rate of grounding              
line retreat, grounding line flux, or ice sheet thinning might be used to identify a threshold                
behavior beyond which a MISI is inevitable (anomaly detection). Supervised approaches will be             
based on well understood system behaviors (requiring “expert judgement”). Eventually,          
unsupervised approaches may remove this subjectivity by illuminating new behaviors or           
thresholds not currently associated with MISI (e.g., combinations of subtle observations).           
Ensembles of Earth system model simulations will be similarly analyzed to clearly identify             
features or thresholds in climate forcing that might ultimately initiate a MISI. One example              
includes increased submarine melting (leading to ice shelf thinning and, subsequently, unstable            
grounding line retreat) as a result of warm ocean water intrusions into ice shelf cavities               
following regional changes in wind stress divergence14.  

b Here we primarily discuss known behaviors of concern and known climate processes that lead to these behaviors. 

Behaviors and processes of additional interest – currently unknown or uncharacterized, yet manifest in our models 

– may also be illuminated through the application of unsupervised learning approaches. 



The critical signatures of these regional climate perturbations and their far-field forcings may             
be “learned” by ML/AI approaches trained on simulations, and thereafter monitored from            
observations. A specific example relevant to ice shelf thinning and grounding line retreat in              
West Antarctica is the strength and location of the Amundsen Sea low (ASL) pressure center               
(impacting regional wind forcing) as influenced by tropical Pacific climate variability (ASL            
teleconnections to ENSO)15.  
 

3.2.2 Discovery and design of reduced order models Modern PDE-based ice sheet models16,17             
have been developed, matured and, to some extent, validated over more than a decade. While               
they are computationally expensive, they are physics based, can efficiently run on DOE HPC              
platforms, and have gained the trust of the scientific community. For most science applications,              
we do not expect that these emulators will be able to fully replace traditional computational               
models. However, emulators can be useful in at least two relevant contexts: (1) to improve               
complex physics modules (contained within existing multi-physics models) that are poorly           
understood and/or too expensive to model; (2) to create cheap, reduced order emulators of              
costly computational models, designed and trained to be used for specific tasks (e.g., predicting              
sea-level rise and related statistics). Several approaches for generating efficient emulators are            
being investigated18. Recent efforts19,20 based on operator regression strategies show promising           
results. Specific examples of (1) include finding emulators for subglacial hydrology or iceberg             
calving submodelsc. In this case, significant research needs to be devoted to ensure that these               
hybrid (PDE+ML) models can be efficiently trained and evaluated. 
 
3.2.3 Improved uncertainty quantification workflows Efforts around uncertainty        
quantification with ice sheet models have pursued a number of approaches to date. Bayesian              
inference approaches have been limited to idealized or highly simplified problems21 or under             
the significant simplification of a Gaussian posterior distribution22. Similarly, forward          
propagation has been limited to problems that assume unrealistically small parameter           
spaces23. These limitations are related to the computational cost of full-physics forward models             
(as discussed above) and the “curse of dimensionality”. In fact, the initialization of a modern ice                
sheet model so that it can realistically reproduce present-day observations requires the            
inference of parameter fields with >106 unique parameters. One of the primary goals for the               
improved emulators discussed above would be in applying these towards reducing costs in             
both the calibration and forward propagation phases of uncertainty quantification workflows           
(see reference 24 for an example of using an emulator to infer subglacial model parameters). 
 
 

c see related white paper “Hybrid (PDE+ML) models in the context of land ice modeling” (M. Perego et al.) 
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