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Focal Areas: This project responds to two focal areas identified in the DOE Call for AI4ESP 
White Papers: 1) Predictive modeling through the use of artificial intelligence (AI) techniques, 
and 2) insights gleaned from complex data using explainable AI and big data analytics. 
Science Challenge: Large wildland fires (hereafter wildfires) appearing as high-impact 
compound climate extreme events are closely related to hydroclimate and water cycle extremes 
that modulate surface fuel supply and combustibility [1]. These compound events have 
multivariate climatic features (e.g., temperature, precipitation, relative humidity, wind, lightning) 
and societal drivers (e.g., forest management, land use change, human caused ignitions) [2-5]. 
Meanwhile, they induce strong feedbacks to the coupled atmosphere, biosphere, and hydrosphere 
by perturbing regional and global radiation budget as well as ecological, biogeochemical, and 
water cycles across multiple spatiotemporal scales [5-7]. The nonlinear interactions between 
these natural and anthropogenic components of the Earth system are too complex to be 
completely and adequately represented in today’s Earth system models (ESMs) [8]. The inherent 
stochastic nature of fire activity at all scales further increases the difficulty of its prediction using 
ESMs that are usually developed from deterministic equations and parameterizations [9]. 
Besides, concurrence of long-term (decadal to interdecadal) global climate change and fire 
regime shifts overlapping with short-term (intraseasonal to interannual) variations of regional 
fire weather and burning activity confound predictability of these compound extreme events.  
We propose to address the above scientific challenges by using machine learning (ML)-based 
data-driven modeling techniques to integrate observations and physically-based ESMs’ 
simulations in a computationally efficient hybrid prediction system. This prediction system is 
supposed to characterize the wildfire’s sensitivity to climate and exogenous drivers at high 
resolution (~ 0.25°) on subseasonal to seasonal (S2S) timescales providing improved 
predictability and explainability. We will use the system to help identify: (1) What are the 
computational elements of a hybrid system needed to predict compound climate extreme events 
such as global wildfires? (2) What are the key drivers (either natural or anthropogenic) that 
modulate short-term variations of multivariate fire weather and burning activity over different 
regions? How can one take advantage of those driver-response relationships to improve the 
predictability of large wildfires on S2S time scales? (3) What are the underlying physical 
mechanisms and sources of improved predictability? Which ML techniques are optimal in 
revealing and adapting these mechanisms? 
Rationale: Robust driver-response relationships existing on different spatiotemporal scales lay 
the foundation for predictability of climate extreme events for either physically-based ESMs or 
statistical/empirical models. Successful S2S prediction of global wildfires relies on correctly 
capturing both climate teleconnections (which modulates local fire weather and surface fuel) and 
human influence (both ignition and suppression effects) on top of seasonal variations in climate. 
Unfortunately, current fire models (using either empirical or process-based approaches) [10-12] 
have shown limited skills in simulating and predicting large wildfires at shorter and finer scales, 
especially over extratropical regions, due to incomplete understanding of the complex 
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interactions between large-scale circulation-driven hydroclimate changes (e.g., drought), 
synoptic fire weather fluctuations (e.g., lightning/gusty wind), and vegetation dynamics (e.g., 
fuel supply/aridity) as well as large uncertainties associated with human influence (e.g., fire 
ignition/prevention/suppression). The coarse resolution grids (~ 1°) and deficient structure of 
current generation ESMs also limit their modeling capability to simulate fire-related climatic and 
ecological feedback processes (e.g., fire plumes and their interactions with cloud systems; fire-
induced vegetation dynamics) at sub-grid fine scales. Therefore, global fire prediction and 
evaluation of fire impacts do not improve dramatically as model resolution increases owing to 
the above structural deficiencies in present ESMs, even given a very substantial increase in 
computational cost for high-resolution ESM simulations. 
To improve understanding of the factors that influence fire predictability, it is necessary to 
continuously improve almost every aspect of the major components (i.e., atmosphere, land, 
ocean, sea ice) of ESMs by better simulating fire-related dynamic, physical, and ecological 
processes associated with both natural and human dimensions of Earth system variability [8]. 
However, this pathway is computationally expensive and demanding as discussed above. An 
alternative approach is to build data-driven statistical/empirical models that bypass incomplete 
physical understanding of fire processes and computational limitations in ESMs to meet the 
realistic needs of fire risk assessment and management [9]. Although this data-driven approach is 
attractive due to lower development and implementation cost, it has its own challenges and 
disadvantages like scarce data and data structure/quality issues for model training and evaluation, 
difficulties in determining complete model predictors and describing nonlinear and nonstationary 
driver-response coupled relations, and a lack of explainability of prediction results. Traditional 
statistical models (e.g., multiple linear regression models; autoregressive integrated moving 
average models) used by previous studies [10, 11] are more susceptible to these problems than 
rapidly developing ML and deep learning (DL) models [13] that usually have weaker model 
assumptions and less susceptibility to poor data quality but also require larger data quantity and 
more sophisticated model training processes.  

 
Figure 1 Comparison of different predictive modeling approaches 

The distinct characteristics of different modeling approaches along with increasingly available 
data from both global remote sensing and improved ESMs (e.g., a new process-based RESFire 
model with region-specific climate-fire-ecosystem interactions [14]) and rapidly advancing 
hardware/software development environment (e.g., CPU-GPU heterogeneous computing) 
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motivate us to consider a hybrid way of integrating physically-based ESMs and data-driven 
ML/DL models for a high-resolution global fire prediction system with improved predictability 
and explainability at reduced computational costs (Fig. 1). We believe this system will provide 
insight into the physical mechanisms explaining multivariate hydroclimate changes and sheds 
light on the prediction of other compound climate extreme events. It would also meet the realistic 
needs for reliable early warning of severe fire hazards and serve as a benchmark for guiding and 
evaluating fire modeling development in the next-generation exascale ESMs such as E3SM. 
Narrative: The proposed hybrid prediction system will be built using predictors identified with 
appropriate ML algorithms such as the Random Forest method that take into account 
comprehensive climatic and anthropogenic driving factors, and robust input-output mapping 
information learned from both observations and current coarse resolution ESMs. We suggest 
some candidate predictors for the fire prediction system would include both natural (e.g., global 
gridded SST, SIC, soil moisture, etc.) and human (e.g., population density, traffic and power 
networks, land use change, etc.) factors, which provide more comprehensive and abundant 
driving force information than what were used by previous empirical fire models such as 
selective regional averaged SST or synthetic climate indices [10, 11].  
Many ML/DL algorithms are candidates for fire predictive modeling. We are particularly 
interested in using DL neural networks (e.g., convolutional neural networks (CNNs) [13], long 
short-term memory networks (LSTMs) [15], or their hybrids) that are designed to automatically 
learn complex (linear and/or nonlinear) mapping functions from multiple inputs to outputs with 
several appealing features including robustness to noise and nonlinearity as well as 
spatiotemporal feature and dependence learning [16], which make them suitable for global fire 
prediction with strong seasonality and nonlinearity. We also plan to use causal inference methods 
(e.g., dynamic Bayesian networks (DBNs) [17], structural causal models (SCMs) [18]) when 
focusing on system explainability (i.e., causal interdependencies of the underlying system) rather 
than predictability, which are complementary to neural networks that tend to be 
overparameterized at the expense of interpretability [16].  
We suggest that these methods could be applied to analyzing both global observational fire data 
(e.g., GFEDv4 [19, 20]) and ensembles of fire model output data from ESMs (e.g., FireMIP 
results under different climate scenarios [21, 22]) for training and evaluation of the new hybrid 
system. Fidelity measures could use those employed in the International Land Model 
Benchmarking (ILAMB) system [23]. A combination of ML/DL algorithms and multi-source 
(i.e., observations and ESM simulations) big data analytics can simultaneously improve S2S 
global fire prediction skills and reveal underlying climate-fire teleconnection mechanisms at a 
lower cost. Moreover, the application of causal inference methods in analysis and evaluation of 
physically-based ESM simulations based on their underlying causal interaction structures 
provides a new perspective other than traditional ways using climate variable statistics to 
understand the similarity and differences between models and observations [18].  
The source code and generated datasets of the proposed hybrid global fire prediction system will 
be deposited to publicly accessible code hosting and data repository platforms such as GitHub 
for evaluation, reproduction, and continuous development. The high-resolution global fire 
prediction datasets are expected to benefit practical fire risk management and responses in 
federal and state agencies such as Federal Emergency Management Agency (FEMA) and 
California Department of Forestry and Fire Protection (CALFIRE) as well as several DOE-
funded scientific focus areas and research programs such as NGEE-Arctic, NGEE-Tropics, 
RUBISCO, and HiLAT-RASM for improved Earth system predictability.  
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